Intra depth-map coding using flexible segmentation, constrained depth modeling modes and simplified/pruned directional prediction

Luís F. R. Lucas
Inst. de Telecomunicações, Portugal
PEE/COPPE/DEL/Poli, Universidade Federal do Rio de Janeiro, Brazil

Krzysztof Wegner
Chair of Multimedia Telecommunications and Microelectronics
Poznań University of Technology, Poland

m34292, July 2014, Sapporo
State-of-the-art

3D-HEVC

- Design for video and depth coding
- It can be used for depth coding only
- Intra directional prediction
- Transform based residual coding
- Depth specific tools
 - Depth modeling modes (DMM)
 - Depth lookup table (DLT)
 - Region boundary chain coding
 - All in-loop filters disable
Predictive Depth Coding

- Flexible Block Partitioning
- Directional Intra Prediction
 - Pre-defined reduction intra direction
 - Adaptive reduction intra direction
- Constrained Depth Modelling Mode
- Non-transform residual signal coding
Flexible Block Partitioning

- Combination of QuadTree and BinTree
 - Quad split (q)
 - Horizontal split (h)
 - Vertical split (v)

- Various block sizes allowed
 - From 64x64
 - Down to 1x1
 - High asymmetry block excluded e.g. 8x64, 1x64
Directional Intra Prediction

- Intra directional prediction from HEVC
 - Planar
 - DC
 - 33 angular
Pre-defined reduction

- In case of
 - small blocks
 - asymmetric blocks
 many directions produce similar prediction signal
- Pre-defined set of directions for every block size
 - Reduced computational complexity
 - Reduced necessary bits

Directions that produce similar prediction

1x4 block
Adaptive reduction

- When all reference samples are exactly the same, many directions produce similar prediction signal.
- Three sets of directions can be disabled depending on:
 - Top and left neighbor samples
 - Disable of modes 10-26
 - Left neighbor samples
 - Disable of modes 2-9
 - Right neighbor samples
 - Disable of modes 27-34

Directions that produce similar prediction
Constrained Depth Modelling Mode

- Similar to DMM in 3D-HEVC
- Designed to represent edges difficult to predict
- Only edges located below anti-diagonal of the block
- Minimal signaling
 - Average depth value of the partition P_1 and P_2
 - Distance in pixels from anti-diagonal d
Constrained Depth Modelling Mode

- Various slopes possible
- Depends on block size
- Exploits flexible partitioning
Residual coding

- DCT not used
- Residual coding depending on prediction mode used
- Null residual or
- Simple linear approximation

Enhanced by DLT as in 3D-HEVC
Experiments

- Compared with 3D-HEVC version 8.2
- All Intra configuration, without VSO
- Only depth maps were coded
- Seven 3D test sequences used (+shark)
- Compared at 4 rate points
- Following evaluation methodology from CTC
 - Virtual views synthesized based on original video and decoder depth maps
Bitrate reduction for depth maps, over 3D-HEVC
Encoder complexity over 3D-HEVC

Execution time ratio (less is better)

avg 0.745
Conclusions

- New intra based depth maps coding algorithm has been developed
- Provide an alternative approach to depth coding
- Provides 3.17% bitrate reduction on average
- 25% less complex than state-of-the-art 3D-HEVC

- Requires further works
 - To support VSO
 - Inter-frame prediction
Questions?